Near-rings in which each element is a power of itself

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rings in which elements are the sum of an‎ ‎idempotent and a regular element

Let R be an associative ring with unity. An element a in R is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von Neumann) element in R. If every element of R is r-clean, then R is called an r-clean ring. In this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. Further we prove that if 0 and 1 are the only idempotents...

متن کامل

Rings for which every simple module is almost injective

We introduce the class of “right almost V-rings” which is properly between the classes of right V-rings and right good rings. A ring R is called a right almost V-ring if every simple R-module is almost injective. It is proved that R is a right almost V-ring if and only if for every R-module M, any complement of every simple submodule of M is a direct summand. Moreover, R is a right almost V-rin...

متن کامل

Right Self-injective Rings in Which Every Element Is a Sum of Two Units

In 1954 Zelinsky [16] proved that every element in the ring of linear transformations of a vector space V over a division ring D is a sum of two units unless dim V = 1 and D = Z2. Because EndD(V ) is a (von-Neumann) regular ring, Zelinsky’s result generated quite a bit of interest in regular rings that have the property that every element is a sum of (two) units. Clearly, a ring R, having Z2 as...

متن کامل

Compactification of a Map Which Is Mapped to Itself

We prove that if T : X → X is a selfmap of a set X such that ⋂ {T nX : n ∈ N} is a one-point set, then the set X can be endowed with a compact Hausdorff topology so that T is continuous.

متن کامل

rings in which elements are the sum of an‎ ‎idempotent and a regular element

let r be an associative ring with unity. an element a in r is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von neumann) element in r. if every element of r is r-clean, then r is called an r-clean ring. in this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. further we prove that if 0 and 1 are the only idempotents...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1970

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700042052